Biophysical properties of voltage-gated Na+ channels in frog parathyroid cells and their modulation by cannabinoids.
نویسندگان
چکیده
The membrane properties of isolated frog parathyroid cells were studied using perforated and conventional whole-cell patch-clamp techniques. Frog parathyroid cells displayed transient inward currents in response to depolarizing pulses from a holding potential of -84 mV. We analyzed the biophysical properties of the inward currents. The inward currents disappeared by the replacement of external Na+ with NMDG+ and were reversibly inhibited by 3 micromol l-1 TTX, indicating that the currents occur through the TTX-sensitive voltage-gated Na+ channels. Current density elicited by a voltage step from -84 mV to -24 mV was -80 pA pF-1 in perforated mode and -55 pA pF-1 in conventional mode. Current density was decreased to -12 pA pF-1 by internal GTPgammaS (0.5 mmol l-1), but not affected by internal GDPbetaS (1 mmol l-1). The voltage of half-maximum (V1/2) activation was -46 mV in both perforated and conventional modes. V1/2 of inactivation was -80 mV in perforated mode and -86 mV in conventional mode. Internal GTPgammaS (0.5 mmol l-1) shifted the V1/2 for activation to -36 mV and for inactivation to -98 mV. A putative endocannabinoid, 2-arachidonoylglycerol ether (2-AG ether, 50 micromol l-1) and a cannabinomimetic aminoalkylindole, WIN 55,212-2 (10 micromol l-1) also greatly reduced the Na+ current and shifted the V1/2 for activation and inactivation. The results suggest that the Na+ currents in frog parathyroid cells can be modulated by cannabinoids via a G protein-dependent mechanism.
منابع مشابه
Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملVoltage-gated sodium channels in pain states: role in pathophysiology and targets for treatment.
Pain is a major unmet medical need which has been causally linked to changes in sodium channel expression, modulation, or mutations that alter channel gating properties or current density in nociceptor neurons. Voltage-gated sodium channels activate (open) then rapidly inactivate in response to a depolarization of the plasma membrane of excitable cells allowing the transient flow of sodium ions...
متن کاملVoltage-gated inward currents of morphologically identified cells of the frog taste disc.
We used the patch clamp technique to record from taste cells in vertical slices of the bullfrog (Rana catesbeiana) taste disc. Cell types were identified by staining with Lucifer yellow in a pipette after recording their electrophysiological properties. Cells could be divided into the following three groups: type Ib (wing) cells with sheet-like apical processes, type II (rod) cells with single ...
متن کاملDevelopmental switch of the expression of ion channels in human dendritic cells.
Modulation of the expression and activity of plasma membrane ion channels is one of the mechanisms by which immune cells can regulate their intracellular Ca(2+) signaling pathways required for proliferation and/or differentiation. Voltage-gated K+ channels, inwardly rectifying K+ channels, and Ca(2+)-activated K+ channels have been described to play a major role in controlling the membrane pote...
متن کاملIn vitro assessment of the effect of methylene blue on voltage-gated sodium channels and action potentials in rat hippocampal CA1 pyramidal neurons.
Methylene blue (MB) is a vital dye to allow better visualization and marker of parathyroid glands. The compound causes a toxic encephalopathy in clinical observations and some neuronal adverse effects in experimental studies. Of neurotoxic effects, reduced field excitatory postsynaptic potentials (fEPSPs) in hippocampal slice cultures and apoptosis induced in neurons by MB, suggest that MB may ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 208 Pt 24 شماره
صفحات -
تاریخ انتشار 2005